A Norm Minimization-Based Convex Vector Optimization Algorithm
نویسندگان
چکیده
We propose an algorithm to generate inner and outer polyhedral approximations the upper image of a bounded convex vector optimization problem. It is approximation based on solving norm-minimizing scalarizations. Unlike Pascoletti–Serafini scalarization used in literature for similar purposes, it does not involve direction parameter. Therefore, free direction-biasedness. also modification by introducing suitable compact subset image, which helps proving first time finiteness optimization. The computational performance algorithms illustrated using some benchmark test problems, shows promising results comparison that scalarization.
منابع مشابه
A Nuclear Norm Minimization Algorithm with Application
In this paper we present a new algorithm to reconstruct prestack (5D) seismic data. If one considers seismic data at a given frequency and, for instance, in the x midpoint, y midpoint, offset and azimuth domain, the data volume can be represented via a 4th order tensor. Seismic data reconstruction can be posed as a tensor completion problem where it is assumed that the fully sampled data can be...
متن کاملExact 1-Norm Support Vector Machines Via Unconstrained Convex Differentiable Minimization
Support vector machines utilizing the 1-norm, typically set up as linear programs (Mangasarian, 2000; Bradley and Mangasarian, 1998), are formulated here as a completely unconstrained minimization of a convex differentiable piecewise-quadratic objective function in the dual space. The objective function, which has a Lipschitz continuous gradient and contains only one additional finite parameter...
متن کاملA VU-algorithm for convex minimization
For convex minimization we introduce an algorithm based on VU-space decomposition. The method uses a bundle subroutine to generate a sequence of approximate proximal points. When a primal-dual track leading to a solution and zero subgradient pair exists, these points approximate the primal track points and give the algorithm’s V, or corrector, steps. The subroutine also approximates dual track ...
متن کاملSustainable Supplier Selection by a New Hybrid Support Vector-model based on the Cuckoo Optimization Algorithm
For assessing and selecting sustainable suppliers, this study considers a triple-bottom-line approach, including profit, people and planet, and regards business operations, environmental effects along with social responsibilities of the suppliers. Diverse metrics are acquainted with measure execution in these three issues. This study builds up a new hybrid intelligent model, namely COA-LS-SVM, ...
متن کاملConvex Optimization with Mixed Sparsity-inducing Norm
Sparsity-inducing norm has been a powerful tool for learning robust models with limited data in high dimensional space. By imposing such norms as constraints or regularizers in an optimization setting, one could bias the model towards learning sparse solutions, which in many case have been proven to be more statistically efficient [Don06]. Typical sparsityinducing norms include `1 norm [Tib96] ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Optimization Theory and Applications
سال: 2022
ISSN: ['0022-3239', '1573-2878']
DOI: https://doi.org/10.1007/s10957-022-02045-8